Изменение поляризации электромагнитного излучения при прохождении через вакуум в присутствии сильных магнитных полей, зарегистрированное экспериментально, ставит новые вопросы перед современной физикой и космологией.
Как сообщает Physorg, в рамках эксперимента PVLAS, проведенного в национальной лаборатории Легнаро в Италии, ученым удалось наблюдать особый эффект воздействия физического вакуума на электромагнитное излучение. Работа ученых “Self-interacting dark matter in the solar system” опубликована в журнале Physical Review.
Экспериментальная установка PVLAS представляет собой вакуумную камеру, помещенную в мощное магнитное поле. Регистрировалась изменение характера поляризации линейно поляризованного лазерного пучка при прохождении его сквозь вакуум. Для увеличения крайне слабого эффекта в камере протяженностью 1 м был размещен резонатор Фабри-Перро, благодаря которому эффективный путь, проходимый фотонами, был увеличен до 60 км.
Результаты эксперимента позволяют сделать вывод о том, что свет при прохождении в вакууме в присутствии мощных магнитных полей «крайне слабо» взаимодействует с особым типом элементарных частиц. При этом вакуум ведет себя подобно кристаллической структуре. Это, в свою очередь, позволяет предположить, что именно эти гипотетические «псевдоскалярные» частицы могут являться одними из кандидатов на роль «темной материи».
«Мы полагаем, что интенсивное магнитное поле приводит к «смешиванию» света с определенным типом гипотетических частиц — так называемых псевдоскалярных, — отметил один из авторов эксперимента, доктор Панкай Джейн (Pankaj Jain) из индийского технологического института в Канпуре. — Можно сказать, что свет частично превращается в эти частицы, а затем спустя очень короткий интервал времени возвращается в обычной состояние. Взаимодействие между фотонами и этими частицами — крайне слабое. Вследствие этого последние могут рассматриваться в качестве одного из кандидатов на роль темной материи».
Правда, существующие космологические модели накладывают значительно более жесткие ограничения на взаимодействие гипотетических псевдоскалярных частиц с фотонами — значительно более жесткие, чем это было обнаружено в ходе осуществленного в итальянской лаборатории эксперимента. По мнению авторов эксперимента, расхождения можно объяснить предположением о достаточно «сильном» взаимодействии псевдоскалярных частиц друг с другом.
Более подробная информация о новом открытии и об эксперименте PVLAS будет представлена на портале Исследования и разработки – R&D.CNews.

